From Our July 2019 Newsletter

Publications

1. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling.
Lancet Infect Dis. 2019 Jul 4. pii: S1473-3099(19)30307-X. doi:
10.1016/S1473-3099(19)30307-X. [Epub ahead of print]

Knight GM(1), McQuaid CF(2), Dodd PJ(3), Houben RMGJ(2).

BACKGROUND: To end the global tuberculosis epidemic, latent tuberculosis
infection needs to be addressed. All standard treatments for latent tuberculosis
contain drugs to which multidrug-resistant (MDR) Mycobacterium tuberculosis is
resistant. We aimed to estimate the global burden of multidrug-resistant latent
tuberculosis infection to inform tuberculosis elimination policy.
METHODS: By fitting a flexible statistical model to tuberculosis drug resistance
surveillance and survey data collated by WHO, we estimated national trends in the
proportion of new tuberculosis cases that were caused by MDR strains. We used
these data as a proxy for the proportion of new infections caused by MDR M
tuberculosis and multiplied trends in annual risk of infection from previous
estimates of the burden of latent tuberculosis to generate trends in the annual
risk of infection with MDR M tuberculosis. These estimates were used in a cohort
model to estimate changes in the global and national prevalence of latent
infection with MDR M tuberculosis. We also estimated recent infection levels (ie,
in 2013 and 2014) and made predictions for the future burden of MDR tuberculosis
in 2035 and 2050.
FINDINGS: 19·1 million (95% uncertainty interval [UI] 16·4 million-21·7 million)
people were latently infected with MDR tuberculosis in 2014-a global prevalence
of 0·3% (95% UI 0·2-0·3). MDR strains accounted for 1·2% (95% UI 1·0-1·4) of the
total latent tuberculosis burden overall, but for 2·9% (95% UI 2·6-3·1) of the
burden among children younger than 15 years (risk ratio for those younger than 15
years vs those aged 15 years or older 2·65 [95% UI 2·11-3·25]). Recent latent
infection with MDR M tuberculosis meant that 1·9 million (95% UI 1·7 million-2·3
million) people globally were at high risk of active MDR tuberculosis in 2015.
INTERPRETATION: We estimate that three in every 1000 people globally carry latent
MDR tuberculosis infection, and prevalence is around ten times higher among those
younger than 15 years. If current trends continue, the proportion of latent
tuberculosis caused by MDR strains will increase, which will pose serious
challenges for management of latent tuberculosis-a cornerstone of tuberculosis
elimination strategies.
FUNDING: UK Medical Research Council, Bill & Melinda Gates Foundation, and
European Research Council.

Read the article here.

2. Analysis of loss to follow-up in 4099 multidrug-resistant pulmonary tuberculosis
patients.
Eur Respir J. 2019 Jul 11;54(1). pii: 1800353. doi: 10.1183/13993003.00353-2018.
Print 2019 Jul.

Walker IF(1), Shi O(2)(3), Hicks JP(4), Elsey H(4), Wei X(2), Menzies D(5), Lan
Z(5), Falzon D(6), Migliori GB(7), Pérez-Guzmán C(8)(9), Vargas MH(9)(10),
García-García L(11), Sifuentes Osornio J(12), Ponce-De-León A(13), van der Walt
M(14), Newell JN(4).

Loss to follow-up (LFU) of ≥2 consecutive months contributes to the poor levels
of treatment success in multidrug-resistant tuberculosis (MDR-TB) reported by TB
programmes. We explored the timing of when LFU occurs by month of MDR-TB
treatment and identified patient-level risk factors associated with LFU.We
analysed a dataset of individual MDR-TB patient data (4099 patients from 22
countries). We used Kaplan-Meier survival curves to plot time to LFU and a Cox
proportional hazards model to explore the association of potential risk factors
with LFU.Around one-sixth (n=702) of patients were recorded as LFU. Median
(interquartile range) time to LFU was 7 (3-11) months. The majority of LFU
occurred in the initial phase of treatment (75% in the first 11 months). Major
risk factors associated with LFU were: age 36-50 years (HR 1.3, 95% CI 1.0-1.6;
p=0.04) compared with age 0-25 years, being HIV positive (HR 1.8, 95% CI 1.2-2.7;
p<0.01) compared with HIV negative, on an individualised treatment regimen (HR
0.7, 95% CI 0.6-1.0; p=0.03) compared with a standardised regimen and a recorded
serious adverse event (HR 0.5, 95% CI 0.4-0.6; p<0.01) compared with no serious
adverse event.Both patient- and regimen-related factors were associated with LFU,
which may guide interventions to improve treatment adherence, particularly in the
first 11 months.

Read the article here.

3. Fluoroquinolones in Drug-Resistant Tuberculosis: Culture Conversion and
Pharmacokinetic/Pharmacodynamic Target Attainment To Guide Dose Selection.
Antimicrob Agents Chemother. 2019 Jun 24;63(7). pii: e00279-19. doi:
10.1128/AAC.00279-19. Print 2019 Jul.

Al-Shaer MH(1), Alghamdi WA(1)(2), Alsultan A(3), An G(4), Ahmed S(5), Alkabab
Y(6), Banu S(5), Barbakadze K(7), Houpt E(6), Kipiani M(7), Mikiashvili L(7),
Cegielski JP(8), Kempker RR(9), Heysell SK(6), Peloquin CA(10).

Fluoroquinolones are group A drugs in tuberculosis guidelines. We aim to compare
the culture conversion between new-generation (levofloxacin and moxifloxacin) and
old-generation (ciprofloxacin and ofloxacin) fluoroquinolones, develop
pharmacokinetic models, and calculate target attainment for levofloxacin and
moxifloxacin. We included three U.S. tuberculosis centers. Patients admitted
between 1984 and 2015, infected with drug-resistant tuberculosis, and who had
received fluoroquinolones for ≥28 days were included. Demographics, sputum
cultures and susceptibility, treatment regimens, and serum concentrations were
collected. A time-to-event analysis was conducted, and Cox proportional hazards
model was used to compare the time to culture conversion. Using additional data
from ongoing studies, pharmacokinetic modelling and Monte Carlo simulations were
performed to assess target attainment for different doses. Overall, 124 patients
received fluoroquinolones. The median age was 40 years, and the median weight was
60 kg. Fifty-six patients (45%) received old-generation fluoroquinolones.
New-generation fluoroquinolones showed a faster time to culture conversion
(median 16 versus 40 weeks, P = 0.012). After adjusting for isoniazid and
clofazimine treatment, patients treated with new-generation fluoroquinolones were
more likely to have culture conversion (adjusted hazards ratio, 2.16 [95%
confidence interval, 1.28 to 3.64]). We included 178 patients in the
pharmacokinetic models. Levofloxacin and moxifloxacin were best described by a
one-compartment model with first-order absorption and elimination. At least 1,500
to 1,750 mg levofloxacin and 800 mg moxifloxacin may be needed for maximum kill
at the current epidemiologic cutoff values. In summary, new-generation
fluoroquinolones showed faster time to culture conversion compared to the old
generation. For optimal target attainment at the current MIC values, higher doses
of levofloxacin and moxifloxacin may be needed.

Read the article here.

4. Characterization of linezolid-resistance-associated mutations in Mycobacterium
tuberculosis through WGS.

J Antimicrob Chemother. 2019 Jul 1;74(7):1795-1798. doi: 10.1093/jac/dkz150.

Pi R(1)(2), Liu Q(1)(2), Jiang Q(1)(2), Gao Q(1)(2).

OBJECTIVES: Linezolid is becoming an important antibiotic for treating MDR/XDR
TB, but the mutations conferring resistance to linezolid remain inadequately
characterized. Herein, we investigated the linezolid-resistance-associated
mutations on a whole-genome scale through parallel selections of resistant
isolates in vitro.
METHODS: Ten parallel Mycobacterium tuberculosis H37Rv cultures were subjected to
spontaneous mutant selection on 7H11 agar plates containing 2.5 mg/L linezolid.
The linezolid resistance of resulting colonies was confirmed by growth on a
second linezolid plate. WGS was then performed to identify mutations associated
with linezolid resistance.
RESULTS: Of 181 colonies appearing on the initial linezolid plates, 154 were
confirmed to be linezolid resistant. WGS showed that 88.3% (136/154) of these
isolates had a T460C mutation in rplC, resulting in a C154R substitution. The
other 18 isolates harboured a single mutation in the rrl gene, with G2814T and
G2270T mutations accounting for 7.8% (12/154) and 3.9% (6/154), respectively.
CONCLUSIONS: No mutations in novel genes were associated with linezolid
resistance in a whole-genome investigation of 154 linezolid-resistant isolates
selected in vitro. These results emphasize that rrl and rplC genes should be the
major targets for molecular detection of linezolid resistance.

This article is not available via open access.